Source Separation and Higher-Order Causal Analysis of MEG and EEG
نویسندگان
چکیده
Separation of the sources and analysis of their connectivity have been an important topic in EEG/MEG analysis. To solve this problem in an automatic manner, we propose a twolayer model, in which the sources are conditionally uncorrelated from each other, but not independent; the dependence is caused by the causality in their time-varying variances (envelopes). The model is identified in two steps. We first propose a new source separation technique which takes into account the autocorrelations (which may be time-varying) and time-varying variances of the sources. The causality in the envelopes is then discovered by exploiting a special kind of multivariate GARCH (generalized autoregressive conditional heteroscedasticity) model. The resulting causal diagram gives the effective connectivity between the separated sources; in our experimental results on MEG data, sources with similar functions are grouped together, with negative influences between groups, and the groups are connected via some interesting sources.
منابع مشابه
Unifying Blind Separation and Clustering for Resting-State EEG/MEG Functional Connectivity Analysis
Unsupervised analysis of the dynamics (nonstationarity) of functional brain connectivity during rest has recently received a lot of attention in the neuroimaging and neuroengineering communities. Most studies have used functional magnetic resonance imaging, but electroencephalography (EEG) and magnetoencephalography (MEG) also hold great promise for analyzing nonstationary functional connectivi...
متن کاملElectromagnetic brain mapping - IEEE Signal Processing Magazine
seen tremendous advances in our ability to produce images of human brain function. Applications of functional brain imaging extend from improving our understanding of the basic mechanisms of cognitive processes to better characterization of pathologies that impair normal function. Magnetoencephalography (MEG) and electroencephalography (EEG) (MEG/EEG) localize neural electrical activity using n...
متن کاملIdentifying Granger causal relationships between neural power dynamics and variables of interest
Power modulations of oscillations in electro- and magnetoencephalographic (EEG/MEG) signals have been linked to a wide range of brain functions. To date, most of the evidence is obtained by correlating bandpower fluctuations to specific target variables such as reaction times or task ratings, while the causal links between oscillatory activity and behavior remain less clear. Here, we propose to...
متن کاملJoint Cumulant and Correlation Based Signal Separation with Application to Eeg Data Analysis
Current methods in Blind Source Separation (BSS) utilize either the higher order statistics or the time delayed crosscorrelations to perform signal separation. In this paper we investigate a method for source separation which utilizes joint information from higher order statistics and delayed cross-correlations. The algorithm is motivated by problems in analysis of Electroencephalography (EEG) ...
متن کاملApplying Independent Component Analysis to the Artifact Detection Problem in Magnetoencephalogram Background Recordings
IntroductIon The analysis of the electromagnetic brain activity can provide important information to help in the diagnosis of several mental diseases. Both electroencephalogram (EEG) and magnetoencephalogram (MEG) record the neural activity with high temporal resolution (Hämäläinen, Hari, Ilmoniemi, Knuutila, & Lounasmaa, 1993). Nevertheless, MEG offers some advantages over EEG. For example, in...
متن کامل